Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water
نویسنده
چکیده
Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model. Keywords—adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.
منابع مشابه
Application of artificial intelligence methods for estimation of maximum surface settlement caused by EPB shield tunneling
Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able...
متن کاملWater Quality Index Estimation Model for Aquaculture System Using Artificial Neural Network
Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality index (WQI) in aquaculture. There exist different approaches for the estimation of the quality...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملAn Improvement on the Estimation of River ECs using ANN Models and ANFIS involving PCA Analysis, Case Study; Nekarood River, IRAN
Estimation of changes in water quality parameters including electrical conductivity along a river is essential. In this paper, ANN and ANFIS-SC were used to estimate the ECs of the Nekarood River, North Iran, from 1992-2013. The study period was divided into two periods of dry and wet, based on the river flow rate. Then, Using the PCA, the effective parameters in EC estimation were determined...
متن کاملApplication of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values
Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial neu...
متن کامل